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Precision measurements of the vortex phase diagram in single crystals of the layered superconductor
Bi2Sr2CaCu2O8�� in oblique magnetic fields confirm the existence of a second phase transition, in
addition to the usual first-order vortex-lattice melting line Hm�T�. The transition has a strong first-order
character, is accompanied by strong hysteresis, and intersects the melting line in a tricritical point (H?m ,
Hkcr). Its field dependence and the changing character of the melting line at the tricritical point strongly
suggest that the ground state for magnetic fields closely aligned with the superconducting layers is a lattice
of uniformly tilted vortex lines.
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The first-order ‘‘vortex melting’’ transition from a solid
(phase-ordered) state to a liquid state with only short range
correlations is the main feature of the phase diagram of
vortex lines in clean, layered high-temperature supercon-
ductors [1]. The application of a small field componentHk,
parallel to the superconducting layers, leads to a lattice of
tilted vortex lines that melts in a similar fashion [2,3].
However, in the more anisotropic (layered) compounds
such as Bi2Sr2CaCu2O8��, the depression of the perpen-
dicular component of the melting field H?m by larger par-
allel fields was interpreted as the consequence of the
decomposition of the tilted vortex lattice into a combined
lattice structure of Josephson vortices (JVs) and
Abrikosov-type pancake vortices (PVs) [2]. For very small
field components H? perpendicular to the layers, chain
structures [4] arising from the attractive interaction of PVs
with JVs were directly visualized by Bitter decoration
[5,6], scanning Hall-probe [4,7], and magneto-optical tech-
niques [8,9]. At higher H? �H?m , the contribution of the
JVs to the free energy of the pancake vortex crystal results
in the almost linear depression of H?m as function of the
parallel field [2,3,10–12]. This behavior in moderate Hk

stops at a temperature dependent characteristic field Hkcr.
Even though melting is still observed above Hkcr, the varia-
tion of H?m with increasing Hk becomes much weaker
[11,12]. Several controversial interpretations of this chang-
ing behavior were proposed, such as layer decoupling [11],
a commensurate transition [13], and a matching effect [14].

In this Letter we focus on the high-temperature portion
of the vortex phase diagram in single crystalline
Bi2Sr2CaCu2O8�� in oblique fields, which can be estab-
lished precisely using the well-defined discontinuity of the
vortex density at the melting transition. We show that (H?m ,
Hkcr) corresponds to a tricritical point in the vortex-lattice
phase diagram, where the melting crosses a novel transi-
tion from a composite lattice at low parallel fields, to

another tilted lattice structure at highHk. The experimental
observation of large hysteresis suggests that this transition
is strongly first order, consistent with recent predictions
[15]. The identification of the vortex ground state at high
parallel field as a tilted lattice structure resolves the open
problem of the apparent anisotropy factor �eff , and allows
one to determine the enhancement of H?m by magnetic
coupling. We find the temperature dependence of �eff to
be consistent with previous observations [16,17] and in
quantitative agreement with the proposed model.

Experiments were performed on rectangular samples cut
from Bi2Sr2CaCu2O8�� single crystals with different oxy-
gen content [18]. The c-axis component of the local mag-
netic induction B?�r� was measured by micro-Hall sensors
placed on the central part of the sample. The 2D electron
gas Hall sensors were fabricated in GaAlAs heterostruc-
tures and had an 8� 8 �m2 active area. Results are pre-
sented in Fig. 1(a) as the local magnetization
H?s � B? �H?. The local dc magnetization of all crys-
tals shows a sharp discontinuity, �B?, at the vortex melt-
ing transition, that was tracked as function ofHk at various
fixed temperatures. The angle � between the magnetic field
and the crystalline c axis was computer controlled with
0.001� resolution, while the field magnitude could be
swept up to 1 T using an electromagnet. Two types of
magnetization loops were measured. In the first, the mag-
netization is traced as a function of the c-axis field at
constant Hk; in the second, the magnetization is measured
as function of Hk at constant H?.

While the discontinuity in the dc magnetization gives a
clear identification of the melting field, another method
[19], in which the magnitude B�f; T� of the periodic part of
the induction above the sample is measured at the fre-
quency f of an ac ripple field applied perpendicularly to
the sample plane, is more convenient and precise. The ac
response is represented as the transmittivity T0, i.e., the in-
phase component B0�f; T�, normalized by the amplitude
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hac of the ac ripple [20]. The steplike feature in the dc
magnetization loop at H?m translates to a paramagnetic
peak in the ac response, shown in Fig. 1(b) [19]. The mag-
nitude of this peak depends on the ratio of �B? to hac. The
peak position is independent of both the amplitude and
frequency of the ac ripple. In the explored temperature
range (above 50 K) and at low frequency (below 27 Hz), a
true paramagnetic signal is measured. At higher frequen-
cies or lower temperatures, flux pinning results in the
partial shielding of the ac field [21]. Nevertheless, a peak-
like feature persists at melting.

Figure 1(a) shows that at T > 50 K, the application of
even a small magnetic field component parallel to the
layers results in the drastic suppression of magnetic irre-
versibility. This is expected when the geometric barrier is
at the origin of flux pinning [22,23]. Simultaneously,H?m is
depressed linearly with increasing Hk. However, at a well-
defined value Hkcr, the dependence of H?m on in-plane field
changes to a much slower, quadratic behavior that very

well fits the anisotropic London model, Hm��� 	
H?m0=�cos2�� sin2�=�2

eff�
1=2 [24]; i.e., the perpendicular

component of the melting field
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The characteristic field H?m0 and the effective anisotropy
parameter �eff will be defined below.

In Fig. 1(b), another feature in the in-phase component
of the ac response can be distinguished, at perpendicular
fields H? somewhat smaller than H?m . This feature is
brought out much more clearly in sweeps of the parallel
field, shown in Fig. 2. There is an abrupt jump from lower
to higher values of T0 on increasing Hk, that only appears
for parallel fields Hk & Hkcr. The position of the jump does
not depend on ac frequency. At low amplitude of the ac
field, a pronounced hysteresis of T0 is observed; this dis-
appears if hac is sufficiently increased.

The transmittivity T0 is simply related to the magnitude
of the shielding current flowing in the sample in response
to the applied ac magnetic field, a higher T0 corresponding
to a smaller current and less screening [20]. In the present
case, dc magnetization loops point to the geometrical
barrier [22] as the main source of screening. However,
increasing the ac field frequency reduces the role of ther-
mally activated depinning of vortices in the crystal bulk.
As a consequence, a bulk screening current due to vortex
pinning emerges [21]. At the frequencies of Fig. 2, the step
in T0 is due to a discontinuous change of the magnitude of
this bulk current at the well-defined in-plane field, Hk �
Hkct. The location of Hkct does not depend on the frequency
and hac, which indicates a vortex phase transition in the
bulk, from a low Hk-phase with higher pinning, to a high

 

FIG. 2 (color). Transmittivity T0 of the same crystal as in
Fig. 1, recorded at T 	 70 K and constant H? 	 58 Oe, as a
function of Hk for various frequencies f and amplitudes hac of
the ac ripple field. A marked hysteresis of the ac screening is
observed. This hysteresis disappears when hac is increased.

 

FIG. 1 (color). (a) dc local magnetization loops recorded on an
as-grown Bi2Sr2CaCu2O8�� single crystal (Tc 	 88 K) at 75 K,
as function of the magnetic field component H? perpendicular to
the superconducting layers, with the in-plane field Hk held
constant. The inset shows a magnified view of the discontinuity
at the vortex melting transition in Hk 	 0. (b) The in-phase
(screening) component of the ac response of the same crystal,
recorded under the same conditions, with an ac magnetic field of
amplitude hac 	 0:8 Oe and frequency f 	 11 Hz applied along
the c axis. The melting transition shows up as a paramagnetic
peak (see inset), the transition from combined to tilted vortex
lattice is indicated by arrows. The ac response is plotted as the
transmittivity T0 � �B0�f; T� � B�f; T � Tc�=�B�f; T > Tc� �
B�f; T � Tc�.

PRL 97, 237005 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

237005-2



Hk-phase with lower pinning. The hysteresis of the screen-
ing current indicates it to be first order.

In Fig. 3 we collect, for T 	 75 K, the positions of the
two first-order transitions in a plot of H? versus Hk. The
usual melting field H?m of the vortices, deduced from the
paramagnetic peak in the transmittivity, shows the well-
known linear decrease as function of Hk [2,10–12], up to
the field-component Hkcr. The field H?ct of the first-order
transition revealed by the (irreversible) transmittivity rap-
idly increases withHk and crosses the melting line atHkcr in
a tricritical point. The same scenario is observed at all
explored temperatures (T > 50 K), with temperature de-
pendent values ofHkcr. The anisotropy factor �eff , extracted
from the London model fit to the high-Hk part of the
melting line, depends on temperature as well as on the
oxygen content of the Bi2Sr2CaCu2O8�� crystals; it is
depicted in Fig. 4.

The low-Hk portion of the phase diagram with almost
linear H?m �Hk� dependence has been interpreted as the
region of crossing vortex lattices of JVs and PV stacks
[2]. A more accurate analysis shows that other ‘‘composite-
lattice’’ configurations compete for the ground state in the
parameter range of Bi2Sr2CaCu2O8��. These are the soli-
ton lattice [25], as well as the set of combined lattices
composed of regularly spaced rows of tilted pancake
stacks, separated by M rows of pancake stacks aligned
with the c axis. The latter type of lattice becomes favorable
at smaller anisotropies and larger Hk. Moreover, if Hk is
sufficiently large and the material anisotropy is not ex-
tremely high, a simple tilted lattice (M 	 0) turns out to be
the most favorable configuration. We interpret the experi-
mentally observed transition as that from a composite to
such a uniformly tilted lattice. A simple estimate for the in-
plane field at which this transition is expected, Bkct, can be

obtained by comparing the ground state energies of the
simplest (M 	 1) composite lattice and of the uniformly
tilted lattice, giving [15]

 Bkct 
 C
�
�ab

�
B?�0= ln

�1:55
�������������
B?�0

q
sBkct

��
1=2
: (2)

Here �0 is the flux quantum, �ab is the ab-plane penetra-
tion depth, � is the penetration depth ratio �c=�ab, and s is
the layer spacing. Equation (2) gives a very good fit to the
experimental transition line, as illustrated in Fig. 3.

The anisotropic three-dimensional behavior (1) of H?m
for large in-plane field Bk >Bkcr strongly supports this
interpretation. The H?m �Hk� dependence is the direct con-
sequence of the vanishing contribution of the magnetic
interaction between PVs to the vortex tilt stiffness in a
highly inclined tilted vortex structure. The angular depen-
dence of the melting field can be derived using a scaling
transformation of coordinates, ~z 	 �2=3z; ~r? 	 ��1=3r?,
which reduces the larger part of the free energy to an
isotropic form [24]. In scaled coordinates the magnetic
field is given by ~B 	 B�2=3�cos2�� sin2�=�2�1=2, while
the tilt angle tan ~� 	 tan�=�. The Josephson tilt energy of a
deformed vortex line (PV stack) in scaled coordinates,

 EJ;t 	
Z d~kl

2�
~"1�~kl�

2
~k2
l j�~u�~kl�j2;

is determined by the effective line tension ~"1�~kl� 	
~"0 ln�1=~rcut

~kl�, valid when the wave vector along the line
direction, ~kl, is much larger than the vortex-lattice zone
boundary vector. Here, �~u�~kl� is the Fourier transform of
the line deformation, and ~"0 	 "0��2=3 with "0 �

�2
0=�4��ab�

2. For near-perpendicular fields (~�� 1) the
core cutoff distance ~rcut is determined by the so-called
thermal vortex wandering length, ~rcut 
 h~u2

n;n�1i
1=2 �

h�~un�1 � ~un�2i1=2, where un is the position of the PV

 

FIG. 3. Two field-component vortex-lattice phase diagram,
with the first-order melting transition H?m (\circ ) determined
from the paramagnetic peak in T0, and the first-order transition to
the tilted PV lattice at Bt (�), determined from the ‘‘glitch’’ in T0

[Fig. 1(b)]. The dashed line is a fit to the composite-to-tilted
lattice transition, Eq. (2) with C 	 0:030; the continuous line is a
fit of the high-field portion of the vortex-lattice melting line to
Eq. (1).

 

FIG. 4 (color online). Temperature dependence of the apparent
anisotropy �eff extracted from the fits of the melting line to
Eq. (1). The drawn line shows a fit to Eq. (4) with intrinsic � 	
500.
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vortex in layer n [26]. For a tilted vortex line, ~un;n�1 	

s tan~�� �~un;n�1 consists of the average displacement as
well as random (thermal) fluctuations meaning that the
core cutoff ~r2

cut 
 s2tan2 ~�� h��~un;n�1�
2i. The melting

temperature is given by Tm 	 A
���������������������
~"1�1=~a�~"0

p
~a, with ~a �

��0= ~B�1=2 and A 
 0:1 [27]. Returning to real coordinates,
we obtain

 T2
m 	 A2�"0s�2 ln

�
CJBsc���=B

r2
0 � tan2�=�2

�
Bsc���
B

; (3)

where the numerical constant CJ 
 5 can be estimated
within the self-consistent harmonic approximation,

Bsc��� 	 ��0=�2s2�=
�������������������������������������
cos2�� ��2sin2�

p
, and r2

0 	

h��~un;n�1�
2i=��s�2 
 2A��0=s

2�2Bm�0�
1=2. Note that

the angular-dependent core cutoff introduces an additional
angular dependence of melting field: Tm no longer depends
only on the ratio Bsc���=B. In particular, a new angular
scale appears given by tan� 	 �r0. In the experimental
angular range tan�� �, �r0, we recover Eq. (1) with the
apparent anisotropy

 �eff 
 �
�
1�

10
�������������������������������
Bm�0��

2s2=�0

p
ln�68

����������������������������������
�0=�Bm�0��

2s2�
p



�
�1=2

: (4)

We note several key points. First, the effective anisotropy
�eff is manifestly smaller than the intrinsic �. It increases
with temperature, and is in excellent agreement with the
experimental data of Fig. 4, strongly suggesting that the
modified core cutoff length originating from the tilting of
the PV stacks determines the behavior of the melting line at
high parallel fields. Very similar behavior has been ob-
served in YBa2Cu3O7�� [16]. Next, the prefactor H?m0 	
Bm�0�=�0 in Eq. (1) is to be interpreted as the hypothetical
vortex melting field Hm;J�� 	 0� in the absence of the
magnetic coupling between PVs. The difference �Hmag 	

H?m �� 	 0� �Hm;J�0� 
 0:15H?m between the real (ex-
perimental) melting field and this prefactor represents the
(remarkably modest) enhancement of the melting field due
to magnetic coupling.

Summarizing, we have established the existence of a
phase transition of the vortex lattice in single crystalline
Bi2Sr2CaCu2O8�� in oblique fields. The transition has a
strong first-order character and intersects the usual first-
order vortex-lattice melting line at a tricritical point
[H?m �T�, H

k
ct�T�]. For fields parallel to the superconducting

layers Hk <Hkcr the melting line shows the signature of a
composite lattice. For Hk >Hkcr, the melting line is fully
consistent with that of a uniformly tilted lattice of PV
stacks. We thus propose that the new first-order transition
takes place between the combined and the tilted vortex
lattice. For low in-plane fields, the combined vortex lattice
is stabilized by the magnetic interaction between PV’s in
the same stack (vortex line). The enhancement of the
melting line in the combined lattice regime is due to the
contribution of this magnetic interaction to the vortex line

tilt stiffness.
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